

## CS-570 Statistical Signal Processing

Lecture 1: Introduction to CS-570

Spring Semester 2019

Grigorios Tsagkatakis





#### Today's Objectives

CS-570 Overview

• Introduction to Statistical Signal Processing



Spring Semester 2017-2018



#### About CS-570

• Lectures

Spring Semester 2017-2018

- ➢ Monday 12:00-14:00, H208
- ➤Wednesday 14:00-16:00, H204
- Office Hours: 1 Hour after each class
- Prerequisites: Digital Signal Processing (CS-370), Applied Mathematics for Engineers (CS-215), Probabilities (CS-217)





### About CS-570

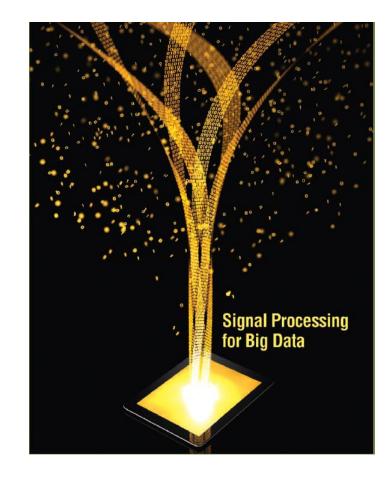
#### **Practical Information**

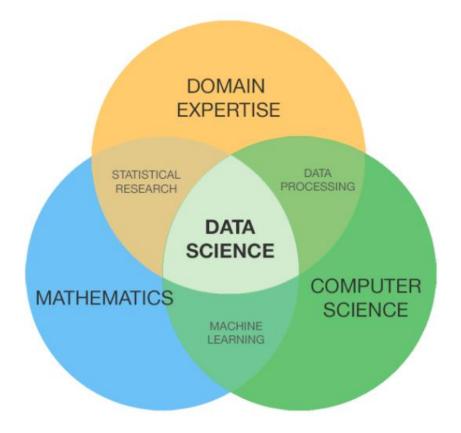
- 2 individual homeworks on the material taught (30% of your final grade)
  - Exercises on MATLAB/python
  - 1<sup>st</sup> assignment will be handed out at the beginning of March
  - 2 weeks time to complete each assignment (hard deadline).
- Standalone project (max for 2 students) (50% of your final grade)
  - Research topic
  - Experimental work / analysis on experimental data
  - Submission of a project report in a technical paper form (motivation, related work, problem formulation, adopted methodology, results, conclusions & outlook)
  - Duration: mid of April End of semester (~mid of June)
- Written Exam (20% of your final grade)

#### All above are compulsory for getting a grade at the end of the exam



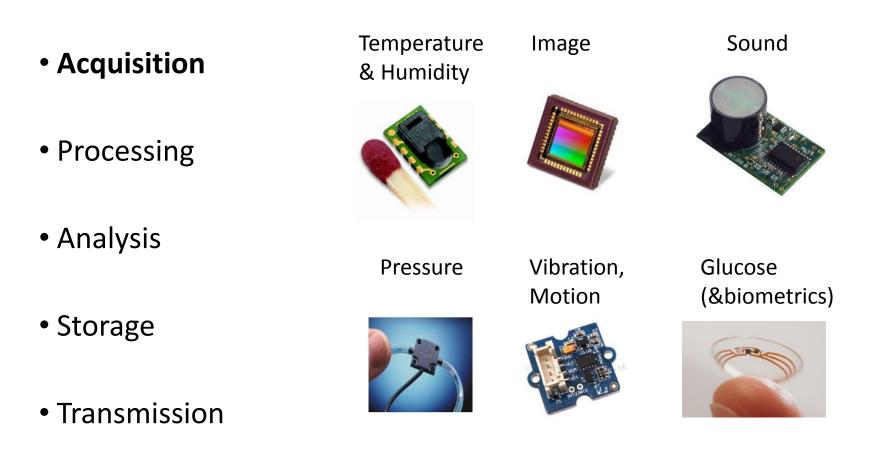



### Topics


- Week 1: Introduction to Statistical Signal Processing & Review
- Week 2: Introduction to optimization
- Week 3: Signal sensing and reconstruction
- Week 4: Computational imaging
- Week 5: Deterministic signal processing
- Week 6: High and low dimensional signal processing
- Week 7: Statistical signal models
- Week 8: Time-series modeling
- Week 9: Distributed signal processing
- Week 10: Machine learning for signal processing
- Week 11: Applications in remote sensing
- Week 12: Applications in Internet-of-Things

Week 13: Review and presentations





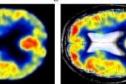






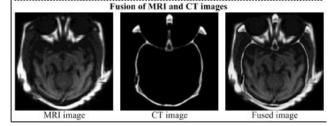







- Acquisition
- Processing
- Analysis
- Storage

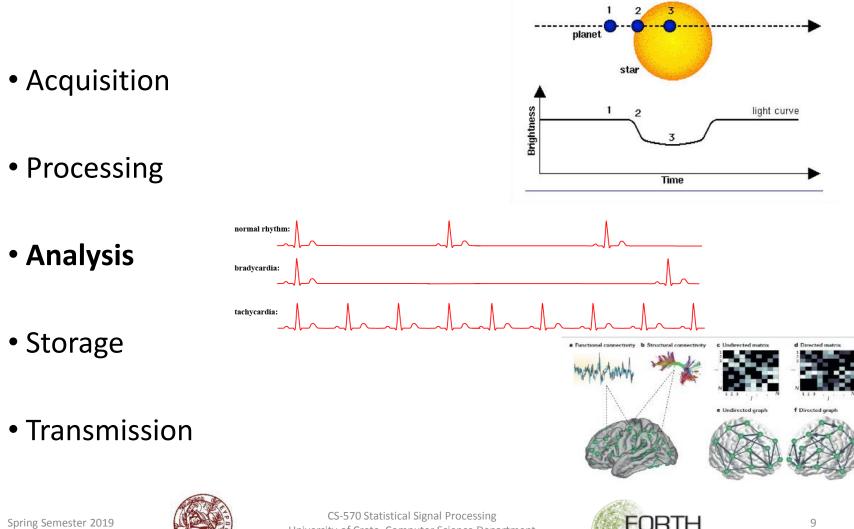

- - Fusion of MRI and PET images







Fused image






CS-570 Statistical Signal Processing University of Crete, Computer Science Department



8



Spring Semester 2019

University of Crete, Computer Science Department

Institute of Computer Science

- Acquisition
- Processing
- Analysis
- Storage

Spring Semester 2019

Contraction of the second seco

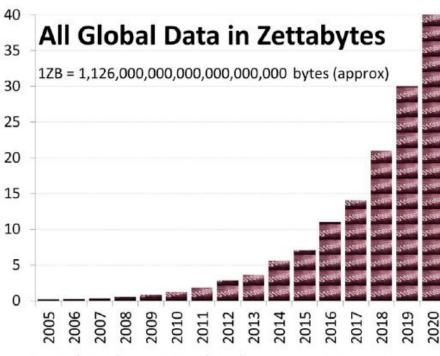


Transmission





- Acquisition
- Processing
- Analysis
- Storage
- Transmission










#### The 5Vs ➢Volume



The growth in data as seen by United Nations Economic Commission for Europe.



CS-570 Statistical Signal Processing University of Crete, Computer Science Department

#### byte sizes byte (B) S D A equivalent to a single character or symbol kilobyte (KB) equivalent to a very short story megabyte (MB) equivalent to a 3.5 inch floppy disk gigabyte (GB) equivalent to 341 average sized digital pictures terabyte (TB) equivalent to a modern day hard drive petabyte (PB) equivalent to 1.5 million **CD-ROM** discs equivalent to 11 million 4K movies zettabyte (ZB) equivalent to 281 trillion MP3 audio files yottabyte (YB) equivalent to 250 trillion





DVDs

avo

DVD DVD

DVD

12

DVD

D DVD

DO



The 5Vs ≻Volume ≻Velocity


Spring Semester 2019

#### **2016** What happens in an INTERNET MINUTE? facebook. NETFLIX WhatsApp 69,444 701,389 Hours Facebook **150 MILLION** 20.8 MILLION+ **Emails Sent** You Tube Messages UBER 1,389 2.78 MILLION Uber Rides tinder 972,222 ß 527,760 Photos Shared 51,000 App Downloads From Apple 2.4 MILLION Search Queries SECONDS Available on the App Store Google 38,052 Hours of Music \$203,596 120+ amazon Spotify New Linkedin Accounts 1.04 MILLION Vine Loops 38,194 Posts to Instagram 347,222 Vine Linked in EXCELACOM @2016 Excelacom, Inc.



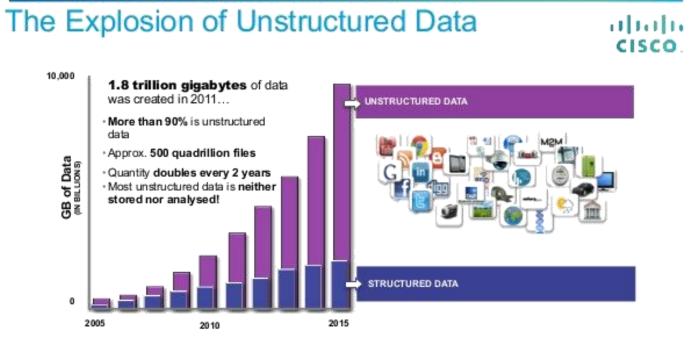


The 5Vs ≻Volume ≻Velocity








The 5Vs ≻Volume **≻Velocity** 







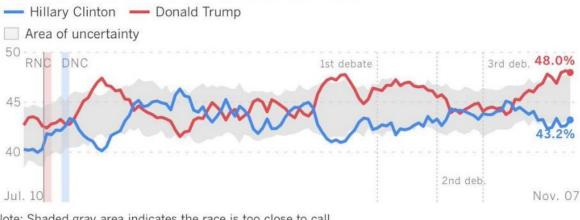
The 5Vs ≻Volume >Velocity >Variety



Source: Cloudera

8



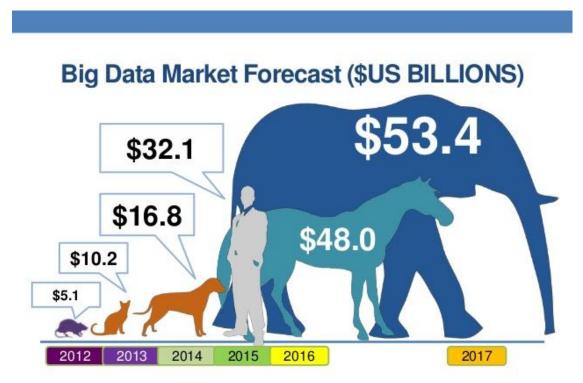



The 5Vs →Volume →Velocity →Variety →Veracity

#### Who's Winning? Daily track of Clinton and Trump's support

Updated daily.

More from the poll, and why it differs from others.



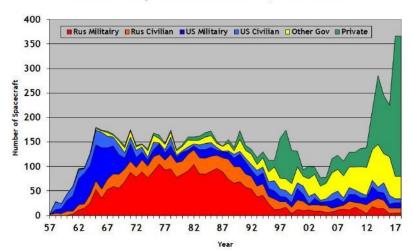

Note: Shaded gray area indicates the race is too close to call. Sources: USC Dornsife/LA Times Presidential Election Daybreak Poll





The 5Vs →Volume →Velocity →Variety →Veracity →Value








#### Earth Observation

The 6 Copernicus Sentinels are producing **over 12 TB** of high-quality full, free and open Earth Observation data **every day**, the equivalent of 6,000+ DVDs

Number of Spacecraft Launched, 1957-2017



Volume of data distributed: 42 PB

**42 PB** 



Spring Semester 2019



#### Astrophysics

| Sky Survey Project                         | Volume   | Velocity          |
|--------------------------------------------|----------|-------------------|
| Sloan Digital Sky<br>Survey (SDSS)         | 50 TB    | 200 GB<br>per day |
| Large Synoptic Survey<br>Telescope (LSST ) | ~ 200 PB | 10 TB<br>per day  |
| Square Kilometer<br>Array (SKA )           | ~ 4.6 EB | 150 TB<br>per day |

THE BIGGER THE BETTER





HOOKER (100") Mt Wilson, California (1917)



(Large Altazimuth Telescope) Zelenchuksky, Russia (1975)



(1979-1998) (1979-1998) MULTI MIRROR TELESCOPE Mt Hopkins, Arizona



KECK TELESCOPE

GEMINI SOUTH

Cerro Pachón

Chile (2000)

Las Campanas Chile

(2000/2002)

LARGE ZENITH TELESCOPE

British Columbia, Canada (2003)

LARGE BINOCULAR TELESCOPE

Mt Graham, Arizona (2005)

GRAN TELESCOPIO CANARIAS

La Palma, Canary Islands,

Spain (2007)

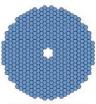
.

KEPLER

Earth-trailing solar orbit (2009)



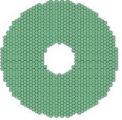
VERY LARGE TELESCOPE Cerro Paranal, Chile (1998-2000)











LARGE SYNOPTIC SURVEY TELESCOPE El Penón, Chile (planned 2020)



THIRTY METER TELESCOPE Mauna Kea, Hawaii (planned 2022)

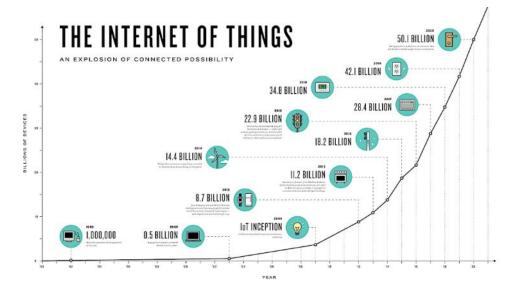


GIANT MAGELLAN TELESCOPE Las Campanas Observatory, Chile (planned 2022/2025)



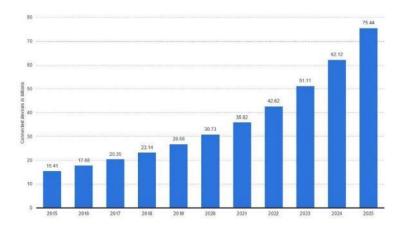
EUROPEAN EXTREMELY LARGE TELESCOPE Cerro Armazones, Chile (planned 2022)




Institute of Computer Science



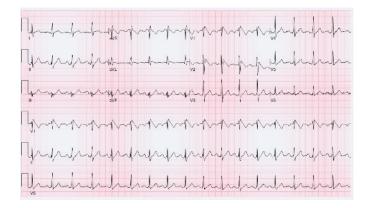
CS-570 Statistical Signal Processing University of Crete, Computer Science Department

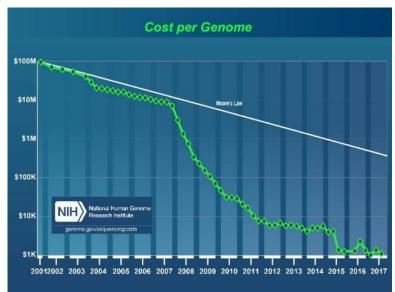

20

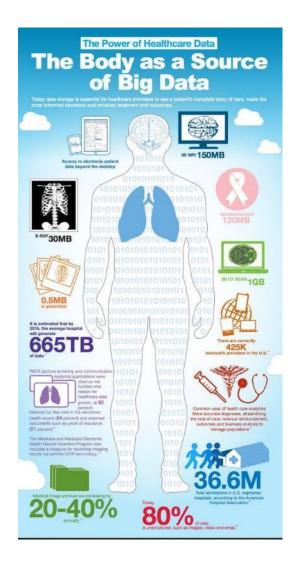
#### Internet-of-Things



Internet of Things - number of connected devices worldwide 2015-2025


Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025 (in billions)



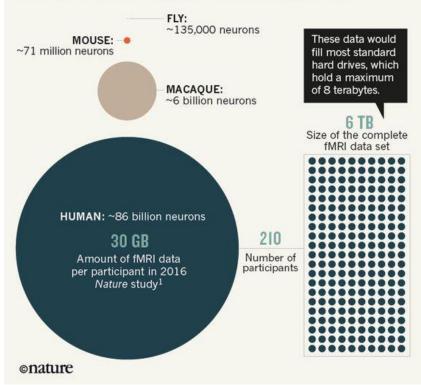



## **Biomedical signals**





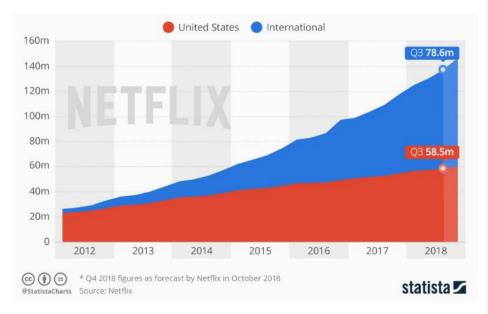







#### Neuroscience

#### **BIG DATA BY THE NUMBERS**


Mapping the brain presents an enticing challenge — and a computationally daunting one. Here's how many data one study last year generated.

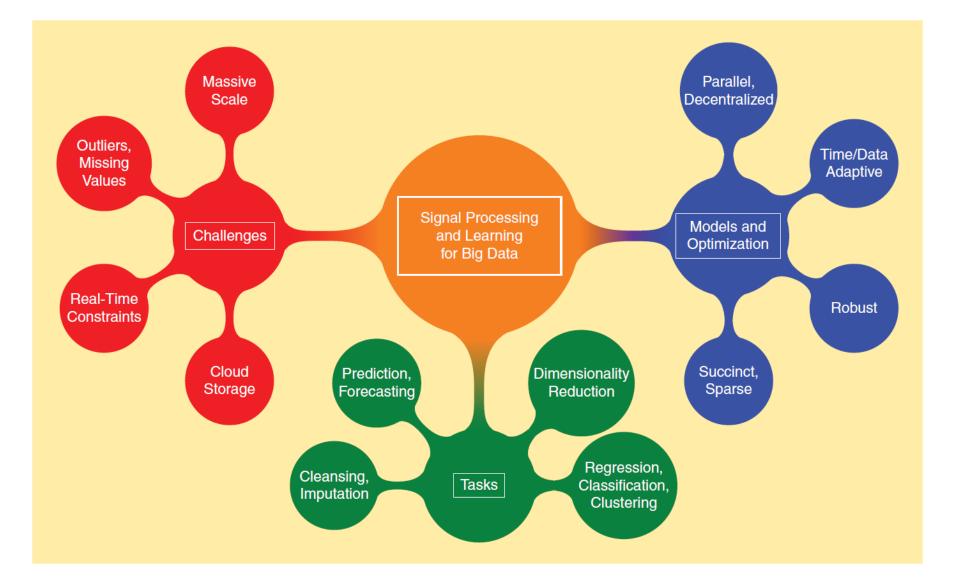







### Imaging technologies




Netflix and YouTube Are America's Biggest Traffic Hogs Share of peak period downstream traffic in North America, by application\*





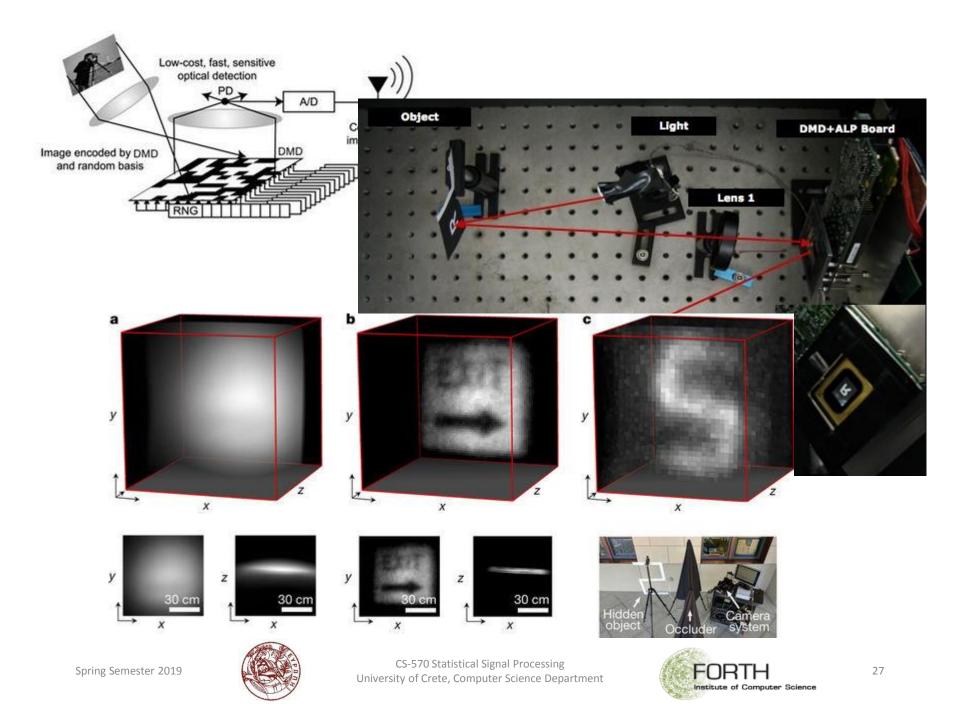
Spring Semester 2019

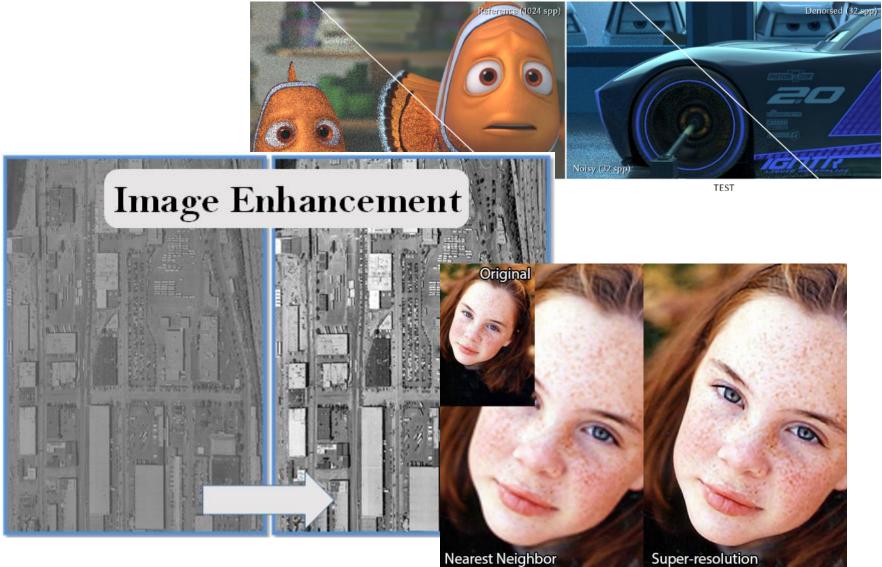






Spring Semester 2019

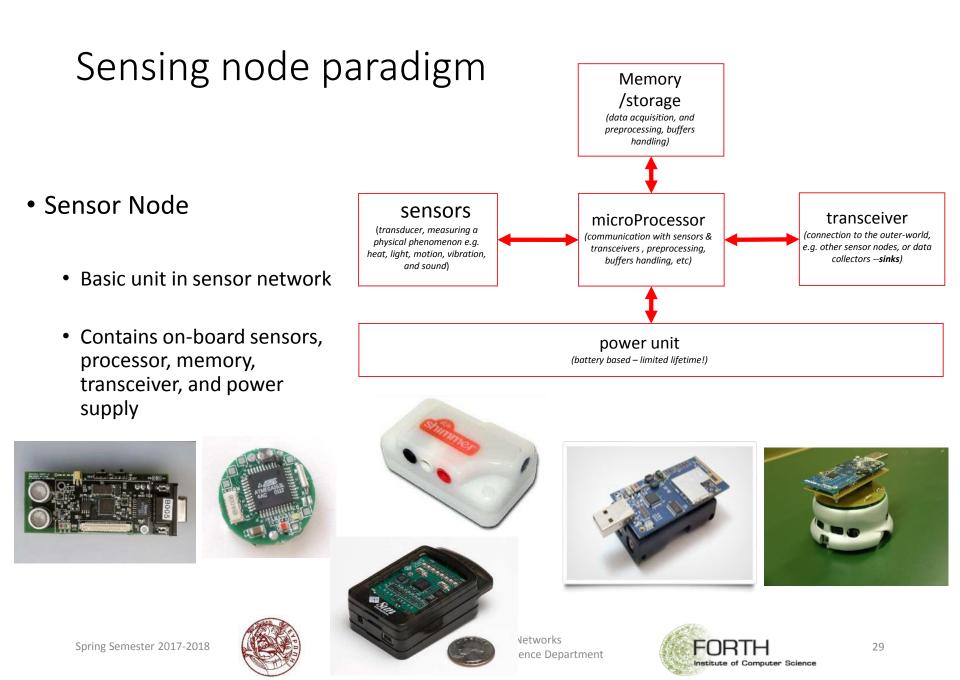




## Fundamental Signal Processing

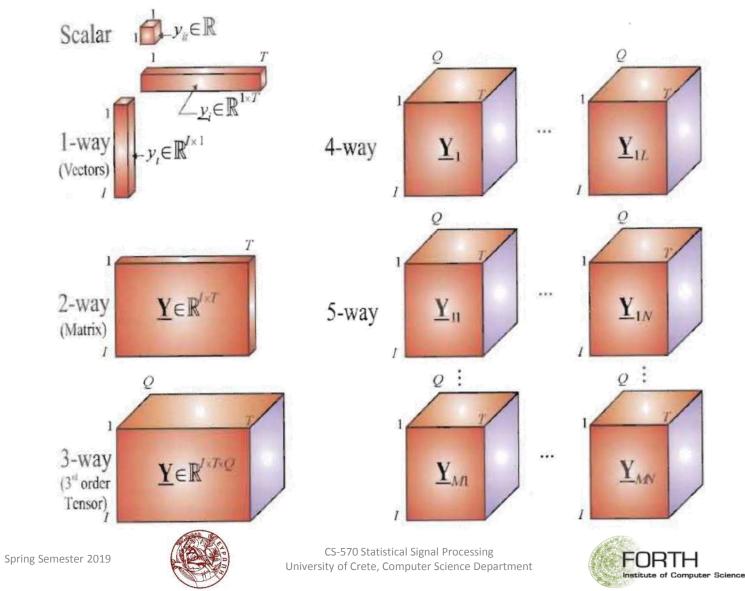
- Signal Sensing: Compressed Sensing
- Inverse problems: Signal Denoising, Enhancement
- Filtering
- Time-series modeling and prediction
- Modeling: dimensionality reduction











Super-resolution







#### Review of basic concepts



30

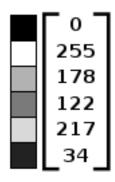
# Vectors • A column vector $\mathbf{v} \in \mathbb{R}^{n \times 1}$ where $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$

• A row vector  $\mathbf{v}^T \in \mathbb{R}^{1 imes n}$  where  $\mathbf{v}^T = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$ 

#### T denotes the transpose operation




Spring Semester 2019




#### Vectors

- Vectors can represent an offset in 2D or 3D space
- Points are just vectors from the origin



- Data (pixels, gradients at an image keypoint, etc) can also be treated as a vector
- Such vectors don't have a geometric interpretation, but calculations like "distance" can still have value







#### Matrix

Spring Semester 2019

• A matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$  is an array of numbers with size  $m \downarrow$  by  $n \rightarrow$ , i.e. m rows and n columns.

| $\mathbf{A} =$ | $\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$ | $a_{12} \\ a_{22}$ | $a_{13} \\ a_{23}$ |     | $\begin{bmatrix} a_{1n} \\ a_{2n} \end{bmatrix}$ |
|----------------|--------------------------------------------------|--------------------|--------------------|-----|--------------------------------------------------|
|                |                                                  |                    | 20                 |     | •                                                |
|                | $a_{m1}$                                         | $a_{m2}$           | $a_{m3}$           | ••• | $a_{mn}$                                         |

• If m=n , we say that  ${f A}$  is square.

|  | г   |     |     |     | _   |
|--|-----|-----|-----|-----|-----|
|  | 193 | 180 | 210 | 112 | 125 |
|  | 189 | 8   | 177 | 97  | 114 |
|  | 100 | 71  | 81  | 195 | 165 |
|  | 167 | 12  | 242 | 203 | 181 |
|  | 44  | 25  | 9   | 48  | 192 |
|  | 1   |     |     |     |     |



#### **Basic Matrix Operations**

- 7

Addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a+1 & b+2 \\ c+3 & d+4 \end{bmatrix}$$

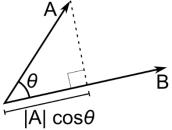
• Can only add a matrix with matching dimensions, or a scalar.

• Scaling

Spring Semester 2019

г

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + 7 = \begin{bmatrix} a+7 & b+7 \\ c+7 & d+7 \end{bmatrix}$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times 3 = \begin{bmatrix} 3a & 3b \\ 3c & 3d \end{bmatrix}$$






- Inner product (dot product) of vectors
  - Multiply corresponding entries of two vectors and add up the result
  - $x \cdot y$  is also  $|x||y|\cos(the angle between x and y)$

$$\mathbf{x}^T \mathbf{y} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i$$
 (scalar)

• If B is a unit vector, then  $A \cdot B$  gives the length of A which lies in the direction of B

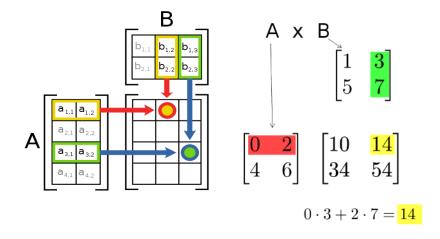






Matrix Multiplication

$$C = AB$$
.  $C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$ .


Properties

$$A(B+C) = AB + AC.$$
  

$$A(BC) = (AB)C.$$
  

$$(AB)^{\top} = B^{\top}A^{\top}$$
  

$$x^{\top}y = (x^{\top}y)^{\top} = y^{\top}x$$



- Powers
  - We can refer to the matrix product AA as A<sup>2</sup>, and AAA as A<sup>3</sup>, etc.
  - Only square matrices can be multiplied that way

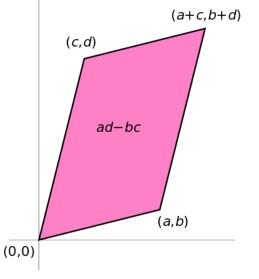




• Transpose 
$$\begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{bmatrix}^T = \begin{bmatrix} 0 & 2 & 4 \\ 1 & 3 & 5 \end{bmatrix} (ABC)^T = C^T B^T A^T$$

• Determinant

Spring Semester 2019


- $\det(\mathbf{A})$  returns a scalar
- Represents area of the parallelogram described by the vectors in the rows of the matrix

• For 
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \det(\mathbf{A}) = ad - bc$$

• Properties: 
$$det(AB) = det(BA)$$

$$det(\mathbf{A}^{-1}) = \frac{1}{det(\mathbf{A})}$$
$$det(\mathbf{A}^{T}) = det(\mathbf{A})$$
$$det(\mathbf{A}) = 0 \Leftrightarrow \mathbf{A} \text{ is sing}$$

 $det(\mathbf{A}) = 0 \Leftrightarrow \mathbf{A}$  is singular







• Trace  $tr(\mathbf{A}) = sum of diagonal elements$ 

$$\mathbf{tr}(\begin{bmatrix} 1 & 3\\ 5 & 7 \end{bmatrix}) = 1 + 7 = 8$$

Invariant to a lot of transformations

• Properties: 
$$tr(AB) = tr(BA)$$
  
 $tr(A + B) = tr(A) + tr(B)$ 

Spring Semester 2019





#### Special matrices

• Identity matrix **I** 
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 2.5 \end{bmatrix}$$

• Symmetric matrix 
$$\mathbf{A}^T = \mathbf{A} \begin{bmatrix} 1 & 2 & 5 \\ 2 & 1 & 7 \\ 5 & 7 & 1 \end{bmatrix}$$
  
• Skew-symmetric matrix  $\mathbf{A}^T = -\mathbf{A} \begin{bmatrix} 1 & -2 & -5 \\ 2 & 1 & -7 \\ 5 & 7 & 1 \end{bmatrix}$ 





#### Matrix Inverse

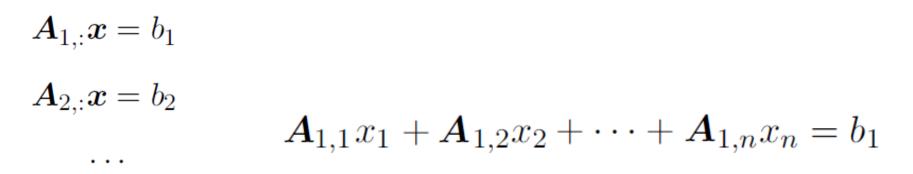
• Given a matrix **A**, its inverse **A**<sup>-1</sup> is a matrix such that **AA**<sup>-1</sup> = **A**<sup>-1</sup>**A** = **I** 

$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$$

- Inverse does not always exist. If A<sup>-1</sup> exists, A is *invertible* or *non-singular*. Otherwise, it's *singular*.
- For matrices that are invertible

$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$
$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$
$$\mathbf{A}^{-T} \triangleq (\mathbf{A}^{T})^{-1} = (\mathbf{A}^{-1})^{T}$$






System of linear equations

# $A \in \mathbb{R}^{m imes n}$ is a known matrix

 $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$   $oldsymbol{b} \in \mathbb{R}^m$  is a known vector,

 $x \in \mathbb{R}^n$  is a vector of unknown variables



 $A_{m,:}x = b_m$ 





#### Solution of system

- Inverse of a matrix  $A^{-1}A = I_n$
- Solution of systems of linear equation  $oldsymbol{I}_n oldsymbol{x} = oldsymbol{A}^{-1}oldsymbol{b}$
- Provided A<sup>-1</sup> exists  $x = A^{-1}b$ .
- If both x and y are solutions then  $z = \alpha x + (1 \alpha)y$ is also a solution for any real  $\alpha$



Ax = b

 $A^{-1}Ax = A^{-1}b$ 

#### Linear combinations

- Linear combination of some set of vectors  $\{v(1), \ldots, v(n)\}$  is given by multiplying each vector v(i) by a corresponding scalar coefficient and adding the results:  $\sum_{i} c_i v^{(i)}$
- The **span** of a set of vectors is the set of all points obtainable by linear combination of the original vectors.



#### Norms

$$||\boldsymbol{x}||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}} \quad p \in \mathbb{R}, p \ge 1$$

a norm is any function f that satisfies

- $f(\boldsymbol{x}) = 0 \Rightarrow \boldsymbol{x} = \boldsymbol{0}$
- $f(\boldsymbol{x} + \boldsymbol{y}) \leq f(\boldsymbol{x}) + f(\boldsymbol{y})$  (the triangle inequality)
- $\forall \alpha \in \mathbb{R}, f(\alpha \boldsymbol{x}) = |\alpha| f(\boldsymbol{x})$



#### Norms

• L<sub>2</sub> norm, also known as Euclidean norm

$$\|x\|_2 = \sqrt{\sum_i x_i^2}$$

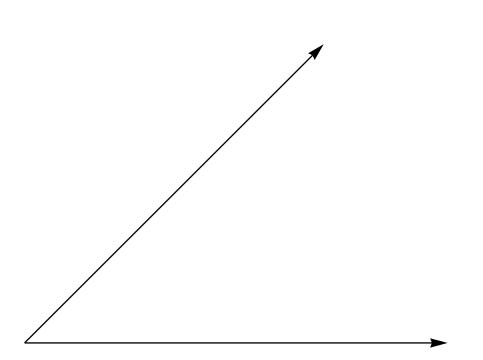
- L<sub>21</sub> norm  $||\boldsymbol{x}||_1 = \sum_i |x_i|$  Infinite norm (or max norm)  $||\boldsymbol{x}||_{\infty} = \max_i |x_i|$
- Frobenius norm (Matrix norm)

$$||A||_F = \sqrt{\sum_{i,j} A_{i,j}^2},$$

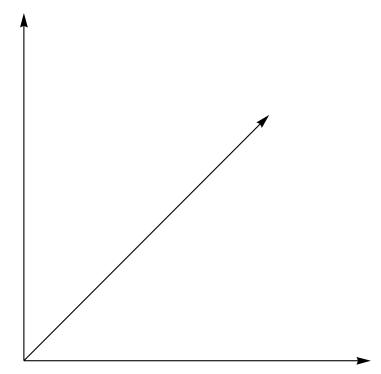




## Linear independence


- Suppose we have a set of vectors  $v_1, ..., v_n$
- If we can express  $v_1$  as a linear combination of the other vectors  $v_2...v_n$ , then  $v_1$  is linearly *dependent* on the other vectors.
  - The direction v<sub>1</sub> can be expressed as a combination of the directions v<sub>2</sub>...v<sub>n</sub>. (E.g. v<sub>1</sub> = .7 v<sub>2</sub> -.7 v<sub>4</sub>)
- If no vector is linearly dependent on the rest of the set, the set is linearly *independent*.
  - Common case: a set of vectors  $v_1, ..., v_n$  is always linearly independent if each vector is perpendicular to every other vector (and non-zero)






Linear independence

#### Linearly independent set



#### Not linearly independent





Spring Semester 2019

